Coronary artery disease (ischemic heart disease)
Coronary artery disease, which is synonymous with ischemic heart disease, is the most common form of cardiovascular disease. It has been the number one killer in Western and high-income countries for more than half a century, causing approximately 20% of all deaths in these regions. Mortality rates and case fatality in coronary artery disease peaked in the 1970s and have declined steadily ever since. The marked decline in death rates and case fatality is most likely explained by successful primary preventive strategies, such as reduced smoking rates, aggressive lowering of blood lipids with statins and sophisticated treatments for hypertension. However, coronary artery disease remains the number one killer in most regions worldwide (Tsao et al.).
The New England Journal of Medicine, 1812. Remarks on Angina Pectoris by John Warren
The remarkable facts, that the paroxysm, or indeed the disease itself, is excited more especially upon walking up hill, and after a meal; that thus excited, it is accompanied with a sensation, which threatens instant death if the motion is persisted in; and, that on stopping, the distress immediately abates, or altogether subsides; have . . . formed a constituent part of the character of Angina Pectoris.
Atherosclerosis: the cause of coronary artery disease
The underlying cause is atherosclerosis, which is a chronic inflammatory disease of the arteries. It has become increasingly clear in the past few decades that atherosclerosis is not caused by the passive deposition of lipids into the coronary artery walls; indeed, atherosclerosis is a disease in which the immune system elicits an active inflammation within the artery wall and lipids (particularly LDL cholesterol) plays a key role. As the inflammation and deposition of lipids progress, an atherosclerotic plaque forms in the wall of the artery. Such atherosclerotic plaques start building up early in childhood and by middle age, most persons have some degree of atherosclerosis in the coronary arteries. Advanced atherosclerotic plaques contain inflammatory cells, smooth muscle cells, extracellular matrix, lipids and acellular debris. The interplay between inflammation and risk factors (smoking, hypertension, hyperlipidemia, diabetes, etc) modifies the progression rate in the atherosclerotic plaque. The more inflammation and more risk factors, the more aggressive atherosclerosis. Moreover, inflammation and risk factors also modify the risk of destabilization of the plaque; atherosclerotic plaques are vulnerable and may disrupt, which may ultimately lead to death (Stone, Libby et al.).
As the atherosclerotic plaque increases in size, it bulges into the artery lumen and causes stenosis (reduction of the artery lumen). The reduction of the artery lumen causes limitations to the blood flow. This may cause symptoms in situations with increased cardiac workload (physical exercise) because the increased workload leads to increased oxygen demand but the stenosis limits the volume that can be delivered to the heart muscle supplied by the atherosclerotic artery. Whenever oxygen demand exceeds oxygen (blood) delivery ischemia occurs and this manifests with chest discomfort referred to as angina pectoris. If the physical activity ceases, the myocardial oxygen demand will gradually decline and the symptoms disappear within minutes. Stable coronary plaques cause symptoms at the same level of myocardial workload and the symptoms disappear within minutes after stopping the activity. The greater the stenosis, the lower the level of myocardial workload required to elicit ischemia and symptoms.
Angina pectoris: the hallmark of coronary artery disease
Angina pectoris is the cardinal symptom of coronary artery disease. It occurs when the myocardium becomes ischemic. It is typically described as a diffuse pain over the anterior chest wall. The pain may be experienced as a pressure, cramp or crushing sensation. The pain may radiate to either arm, neck, back or shoulder. Angina pectoris is often accompanied by shortness of breath (dyspnea). If these symptoms are stable over time, then the condition is classified as stable angina pectoris and this implies that the coronary artery disease is significant but stable. Patients with stable angina pectoris only experience angina (chest pain) in situations with increased myocardial workload, and symptoms subside when the workload returns to normal. The most typical scenario is angina pectoris provoked by physical exercise or mental stress. Both these scenarios increase heart rate and workload which subsequently causes myocardial ischemia. Importantly, in stable angina pectoris, the symptoms subside within minutes after resting or after administration of nitroglycerin. Also, the level of physical activity that elicits angina must be stable during the past few weeks. Please refer to Approach to Patients with Chest Pain for details regarding the evaluation of chest pain patients.
The size of coronary plaques tends to increase with time. This leads to increased stenosis (the arterial lumen becomes more narrow) and thus more pronounced symptoms (i.e symptoms at lower myocardial workloads). Notably, research conducted in the past few years has shown that intensive statin treatment may slow, inhibit or even reverse this progression (The JUPITER Study, Ridker et al).
Atherosclerotic plaques are frail: damage causes acute coronary syndromes and myocardial infarction
The most serious scenario emerges if the atherosclerotic plaque is damaged, either by rupturing or by erosion of the endothelium covering the plaque. This is generally the result of intensive inflammation within the plaque. As mentioned above, the plaque houses inflammatory (immune) cells that maintain a chronic inflammation within the plaque. Chronic inflammation destabilizes the plaque and ultimately results in a rupture or erosion. A damaged plaque exposes thrombogenic substances located within the artery wall (e.g collagen). Such thrombogenic substances will activate thrombocytes and coagulation factors that pass by and this leads to the formation of a thrombus (atherothrombosis; formation of a thrombus within an artery). This process only takes a few minutes, or even less. The thrombus occludes the artery either completely or partially. In either case, the sudden reduction in arterial blood flow will lead to myocardial ischemia. This type of ischemia is typically very severe and causes persisting chest discomfort which is not alleviated by rest and nitroglycerin barely mitigates the pain. This scenario, in which a ruptured/eroded atherosclerotic plaque causes atherothrombosis with ensuing severe myocardial ischemia, is referred to as an acute coronary syndrome. Please refer to Figure 1.